Ground Mount Pier Design Optimization

February 13, 2022
Goal: Specify concrete pier depth and diameter for Northern Cheyenne ARPA At-Risk Elder 10-kW solar photovoltaic 15-array Project given local wind and snow conditions.

Parameters and parameter values included:

$$
\begin{array}{cl}
\text { array elevation angle: } & \alpha=30^{\circ}, 45^{\circ}, 60^{\circ} \\
\text { array front-edge height: } & h=24^{\prime \prime}, 48^{\prime \prime}, 72^{\prime \prime}, 96^{\prime \prime}, 120^{\prime \prime} \\
\qquad \text { pier depth: } & Z_{\mathrm{P}}=3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime} \\
\text { number of posts/piers: } & n=10,(12,14,16 \text { pending) } \\
\text { pier diameter: } & D_{\mathrm{P}}=1^{\prime}\left(1.5^{\prime}, 2^{\prime}\right. \text { pending) } \\
\text { wind speed: } & U=90,100,110,120 \mathrm{mph}
\end{array}
$$

Address the pros and cons of selecting the given values of each parameter.

1. array elevation angle, $\alpha=30^{\circ}, 45^{\circ}, 60^{\circ}$
a. $\alpha=30^{\circ}$ pros:
i. shorter overall array minimizes structural steel costs
ii. lower profile minimizes wind loads
b. $\alpha=30^{\circ}$ cons:
i. shallower angle does not promote snow shedding
ii. shallower angle does not capture winter sun
c. $\alpha=45^{\circ}$ pros:
i. provides balance between summer production and winter production
ii. "proven" design
d. $\alpha=45^{\circ}$ cons:
i. does not maximize winter production
ii. may not provide adequate snow shedding (Figure 1)
e. $\alpha=60^{\circ}$ pros:
i. provides greater winter solar production
ii. provides greater snow shedding
f. $\alpha=60^{\circ}$ cons:
i. greater material cost due to greater array height
ii. reduced summer production
iii. increased risk of wind damage

Figure 1. Muddy Hall PV array $\left(\alpha=45^{\circ}, h=48^{\prime \prime}\right)$ Feb 2, 2022 with significant snow cover. ${ }^{1}$
2. array front-edge height, $h=24^{\prime \prime}, 48^{\prime \prime}, 72^{\prime \prime}, 96^{\prime \prime}, 120^{\prime \prime}$
a. $h=24$ " pros
i. provides lowest cost of structural steel
ii. minimizes wind-load-induced stress
iii. easiest to build
b. $h=24^{\prime \prime}$ cons
i. production losses from terrain shading
ii. possible production losses from snow shading
iii. production losses from vegetation shading
iv. production losses from transient shading, i.e. animals or vehicles
v. may invite unwanted climbing
c. $h=48^{\prime \prime}$ pros
i. modest cost of structural steel
ii. modest wind-load-induced stress
iii. moderately easy to build
d. $h=48^{\prime \prime}$ cons
i. some production losses from terrain shading
ii. possible production losses from vegetation shading
iii. some production losses from transient shading, i.e. animals or vehicles
iv. may invite unwanted climbing
e. $h=72^{\prime \prime}$ pros
i. nominal shading losses
ii. lower climbing risk
f. $h=72^{\prime \prime}$ cons
i. added structural steel cost
ii. added wind load
g. $h=96^{\prime \prime}$ pros
i. nominal shading losses
ii. lower climbing risk

[^0]h. $h=96^{\prime \prime}$ cons
i. added structural steel cost
ii. added wind load
i. $h=120^{\prime \prime}$ pros
i. minimal shading losses
ii. lowest climbing risk
j. $h=120^{\prime \prime}$ cons
i. maximum structural steel cost
ii. maximum wind load
3. pier depth, $Z_{\mathrm{P}}=3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}$
a. $Z_{\mathrm{P}}=3^{\prime}$ pros
i. lowest cost of concrete
ii. lowest cost of auger time, fuel, and labor
b. $Z_{\mathrm{P}}=3^{\prime}$ cons
i. highest risk of pier pull-out
ii. little room for error in post length
c. $Z_{\mathrm{P}}=4^{\prime}$ pros
i. modest cost of concrete
ii. modest cost of auger time, fuel, and labor
d. $Z_{\mathrm{P}}=4^{\prime}$ cons
i. modest risk of pier pull-out
ii. modest room for error in post length
e. $Z_{P}=5^{\prime}$ pros
i. modest risk of pier pull-out
ii. room for post length error
f. $Z_{\mathrm{P}}=5^{\prime}$ cons
i. concrete cost
ii. auger time, fuel and labor cost
g. $Z_{P}=6^{\prime}$ pros
i. minimal risk of pier pull-out
ii. maximum for post length error
h. $Z_{\mathrm{P}}=6^{\prime}$ cons
i. maximum concrete cost
ii. maximum auger time, fuel and labor cost
4. number of posts, $n=10,12,14,16$
a. $n=10$ pros
i. lowest cost of structural steel and concrete
ii. lowest cost of auger time, fuel, and labor
b. $n=10$ cons
i. highest risk of structural steel deformation/yield
ii. highest risk of rail deformation/yield
c. $n=12$ pros
i. modest cost of structural steel and concrete
ii. modest cost of auger time, fuel, and labor
d. $n=12$ cons
i. moderate risk of structural steel deformation/yield
ii. moderate risk of rail deformation/yield
e. $n=14$ pros
i. modest risk of structural steel deformation/yield
ii. modest risk of rail deformation/yield
f. $n=14$ cons
i. cost of structural steel and concrete
ii. cost of auger time, fuel, and labor
g. $n=16$ pros
i. minimal risk of structural steel deformation/yield
ii. minimal risk of rail deformation/yield
h. $n=16$ cons
i. maximal cost of structural steel and concrete
ii. maximal cost of auger time, fuel, and labor

To perform the optimization, I adopted a code previously written in MATLAB for Montana Solar, ${ }^{2}$ and cast the code into MS Excel. To estimate pull-out force, I wrote a system of three equations for static loading and obtained the expected pull-out force for the four [4] wind speeds modeled (Table 1).

Table 1. pull-out forces in Ibs for angle α, windspeed U, and array-front height, h.

vertical reaction force on south piles as function of front height		90 mph			100 mph			110 mph			120 mph		
		30	45	60	30	45	60	30	45	60	30	45	60
$R_{\text {sy,tot }}$	24	23,734	34,176	44,889	29,301	42,193	55,418	35,455	51,054	67,056	42,194	60,758	79,802
	48	25,357	37,084	51,481	31,305	45,782	63,557	37,880	55,396	76,903	45,080	65,926	91,521
	72	26,981	39,991	58,073	33,310	49,371	71,695	40,304	59,739	86,751	47,966	71,094	103,241
	96	28,604	42,898	64,665	35,314	52,960	79,833	42,729	64,082	96,598	50,852	76,263	114,960
	120	30,227	45,805	71,257	37,318	56,549	87,971	45,154	68,425	106,445	53,738	81,431	126,679

As seen in Table 1, the minimum predicted vertical force on the set of southern piers, $R_{\text {sy,tot }}\left(U=90 \mathrm{mph}, \alpha=30^{\circ}, h=24^{\prime \prime}\right)$ the predicted pull-out force is just under $24,000 \mathrm{lbs}$, and for $R_{\text {sy,tot }}\left(U=120 \mathrm{mph}, \alpha=60^{\circ}, h=120 \prime\right.$), the predicted pull-out force is just over 125,000 lbs.

Next, we distribute this load over half of the piers, i.e. $n / 2=5,6,7,8$ and calculate safety factors, $S F$ based on the model published by (Owino, Zakaria, Shiau 2018) ${ }^{3}$ for each configuration (Table 2).

[^1]Table 2. Safety factor results for 10-post array ($n=10$), post diameter, $D_{\mathrm{P}}=1^{\prime}$, post depth, $Z_{\mathrm{P}}=3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}$, windspeed $U=90,100,110,120 \mathrm{mph}$, and array front height $h=24^{\prime \prime}, 48^{\prime \prime}, 72^{\prime \prime}$, 96", 120". Key: $1.0<S F<2.0,2.0<S F<3.0, S F>3.0$.

For example, the safety factor for a 10-post array ($n=10$) with a front height array at $120^{\prime \prime}$ and thirty degrees, $\alpha=30^{\circ}$, with a one-foot diameter pier, $D_{\mathrm{P}}=1^{\prime}$, three feet deep, $Z_{\mathrm{P}}=3^{\prime}$, the safety factor is 1.9, or just under $S F=2.0$.

As of this writing (2/9/2022) I am leaning toward a recommendation of $h=48^{\prime \prime}$ and $\alpha=60^{\circ}$. I have highlighted the safety factors for this pair of parameters for each of the four pier depths and each of the four windspeeds modeled. Of the sixteen resulting safety factors, the only result that achieves $S F>2.0$ is $Z_{\mathrm{P}}=6^{\prime}, U=90 \mathrm{mph}$. Of the sixteen results four [4] of these result in $S F<1.0$, three of which are for $Z_{\mathrm{P}}=3^{\prime}$ as indicated by red font on a red background. Based on these preliminary results prior to our planned soil testing, I recommend $Z_{\mathrm{P}}=5^{\prime}$ to avoid the safety factor of less than unity at $U=120 \mathrm{mph}$, $\alpha=60^{\circ}, n=10, D_{\mathrm{P}}=1^{\prime}, Z_{\mathrm{P}}=4^{\prime}$.

Future work will include stress analysis for posts and rails as well as pullout results for $n=12,14,16$ and $D_{P}=1.5^{\prime}$ and 2.0^{\prime}. I will also perform a stress analysis for at least three [3] common schedule-40 structural tubing standards.

[^0]: ${ }^{1}$ Snow removal service was discussed during Feb 11, 2022 meeting among Bradley Layton, Daniel East, and Sonny BraidedHair.

[^1]: ${ }^{2}$ Montana Solar: https://www.mtsolar.us
 ${ }^{3}$ Owino, Zakaria, Shiau, 2018: https://www.researchgate.net/publication/328405959 Pullout Resistance of Single Piles and Parametric Study using the Finite Difference Method FDM

