

1	Ground Mount Pie	r Design Optimization
2		February 13, 2022
3 4	Goal: Specify concrete pier depth and diameter for <u>photovoltaic 15-array Project</u> given local wind and	Northern Cheyenne ARPA At-Risk Elder 10-kW solar snow conditions.
5	Parameters and parameter values included:	
6	array elevation angle:	<i>α</i> = 30°, 45°, 60°
7	array front-edge height:	<i>h</i> = 24", 48", 72", 96", 120"
8	pier depth:	Z _P = 3', 4', 5', 6'
9	number of posts/piers:	<i>n</i> = 10, (12, 14, 16 pending)
10	pier diameter:	D _P = 1' (1.5', 2' pending)
11	wind speed:	<i>U</i> = 90, 100, 110, 120 mph
12	Address the pros and cons of selecting the given va	alues of each parameter.
13	1. array elevation angle. $\alpha = 30^{\circ}$. 45° . 60°	
14	a. $\alpha = 30^{\circ}$ pros:	
15	i. shorter overall array minin	nizes structural steel costs
16	ii. lower profile minimizes wi	nd loads
17	b. $\alpha = 30^{\circ}$ cons:	
18	i. shallower angle does not p	promote snow shedding
19	ii. shallower angle does not o	capture winter sun
20	c. $\alpha = 45^{\circ}$ pros:	
21	i. provides balance between	summer production and winter production
22	ii. "proven" design	
23	d. $\alpha = 45^{\circ}$ cons:	
24	i. does not maximize winter	production
25	ii. may not provide adequate	snow shedding (Figure 1)
26	e. $\alpha = 60^{\circ}$ pros:	
27	i. provides greater winter so	lar production
28	ii. provides greater snow she	dding
29	f. $\alpha = 60^{\circ}$ cons:	-
30	i. greater material cost due t	to greater array height
31	ii. reduced summer production	on
32	iii. increased risk of wind dam	nage

2	Figure 1. Mud	ddy Hall PV array (α = 45°, h = 48") Feb 2, 2022 with significant snow cover. ¹
3	2. array f	ront-edge height, <i>h</i> = 24", 48", 72", 96", 120"
4	a.	<i>h</i> = 24" pros
5		i. provides lowest cost of structural steel
6		ii. minimizes wind-load-induced stress
7		iii. easiest to build
8	b.	h = 24'' cons
9		i. production losses from terrain shading
10		ii. possible production losses from snow shading
11		iii. production losses from vegetation shading
12		iv. production losses from transient shading, i.e. animals or vehicles
13		v. may invite unwanted climbing
14	с.	<i>h</i> = 48" pros
15		i. modest cost of structural steel
16		ii. modest wind-load-induced stress
17		iii. moderately easy to build
18	d.	h = 48'' cons
19		i. some production losses from terrain shading
20		ii. possible production losses from vegetation shading
21		iii. some production losses from transient shading, i.e. animals or vehicles
22		iv. may invite unwanted climbing
23	e.	$h = 72^{\prime\prime} \text{ pros}$
24		i. nominal shading losses
25	c	II. lower climbing risk
26	t.	$h = 72^{\circ}$ cons
27		I. added structural steel cost
28		
29	g.	n = 96 pros
30		I. nominal snading losses
31		II. Iower climbing risk

¹ Snow removal service was discussed during Feb 11, 2022 meeting among Bradley Layton, Daniel East, and Sonny BraidedHair.

1		h.	<i>h</i> = 96" cons
2			i. added structural steel cost
3			ii. added wind load
4		i.	<i>h</i> = 120" pros
5			i. minimal shading losses
6			ii. lowest climbing risk
7		j.	<i>h</i> = 120" cons
8			i. maximum structural steel cost
9			ii. maximum wind load
10	3.	pier de	pth, $Z_{\rm P}$ = 3', 4', 5', 6'
11		a.	$Z_{\rm P}$ = 3' pros
12			i. lowest cost of concrete
13			ii. lowest cost of auger time, fuel, and labor
14		b.	$Z_{\rm P}$ = 3' cons
15			i. highest risk of pier pull-out
16			ii. little room for error in post length
17		с.	$Z_{\rm P}$ = 4' pros
18			i. modest cost of concrete
19			ii. modest cost of auger time, fuel, and labor
20		d.	$Z_{\rm P}$ = 4' cons
21			i. modest risk of pier pull-out
22			ii. modest room for error in post length
23		e.	$Z_{\rm P}$ = 5' pros
24			i. modest risk of pier pull-out
25			ii. room for post length error
26		f.	$Z_{\rm P}$ = 5' cons
27			i. concrete cost
28			ii. auger time, fuel and labor cost
29		g.	$Z_{\rm P}$ = 6' pros
30			i. minimal risk of pier pull-out
31			ii. maximum for post length error
32		h.	$Z_{\rm P}$ = 6' cons
33			i. maximum concrete cost
34			ii. maximum auger time, fuel and labor cost
35	4.	numbe	r of posts, <i>n</i> = 10, 12, 14, 16
36		a.	n = 10 pros
37			i. lowest cost of structural steel and concrete
38			ii. Iowest cost of auger time, fuel, and labor
39		b.	n = 10 cons
40			i. highest risk of structural steel deformation/yield
41			ii. highest risk of rail deformation/yield
42		с.	<i>n</i> = 12 pros
43			i. modest cost of structural steel and concrete
44			modest cost of auger time, fuel, and labor

1	d. <i>n</i> = 12 cons	
2	i. moderate risk of structural steel deformation/yield	
3	ii. moderate risk of rail deformation/yield	
4	e. <i>n</i> = 14 pros	
5	i. modest risk of structural steel deformation/yield	
6	ii. modest risk of rail deformation/yield	
7	f. <i>n</i> = 14 cons	
8	i. cost of structural steel and concrete	
9	ii. cost of auger time, fuel, and labor	
10	g. <i>n</i> = 16 pros	
11	i. minimal risk of structural steel deformation/yield	
12	ii. minimal risk of rail deformation/yield	
13	h. <i>n</i> = 16 cons	
14	i. maximal cost of structural steel and concrete	
15	ii. maximal cost of auger time, fuel, and labor	
16	To perform the optimization, I adopted a code previously written in MATLAB for Montana	Solar, ²
17	and cast the code into MS Excel. To estimate pull-out force, I wrote a system of three equation	ns for

18 static loading and obtained the expected pull-out force for the four [4] wind speeds modeled (Table 1).

19 **Table 1.** pull-out forces in lbs for angle α , windspeed U, and array-front height, h.

vertical re	action force	90 mph				100 mph			110 mph			120 mph			
functio	n pries as														
height		30	45	60	30	45	60		30	45	60	30	45	60	
	24	23,734	34,176	44,889	29,301	42,193	55,418		35,455	51,054	67,056	42,194	60,758	79,802	
	48	25,357	37,084	51,481	31,305	45,782	63,557		37,880	55,396	76,903	45,080	65,926	91,521	
$R_{\rm sy,tot}$	72	26,981	39,991	58,073	33,310	49,371	71,695		40,304	59,739	86,751	47,966	71,094	103,241	
	96	28,604	42,898	64,665	35,314	52,960	79,833		42,729	64,082	96,598	50,852	76,263	114,960	
	120	30,227	45,805	71,257	37,318	56,549	87,971		45,154	68,425	106,445	53,738	81,431	126,679	

As seen in Table 1, the minimum predicted vertical force on the set of southern piers,

- 22 $R_{\text{sy,tot}}(U = 90 \text{ mph}, \alpha = 30^{\circ}, h = 24'')$ the predicted pull-out force is just under 24,000 lbs, and for
- 23 $R_{\text{sy,tot}}(U = 120 \text{ mph}, \alpha = 60^{\circ}, h = 120^{\circ})$, the predicted pull-out force is just over 125,000 lbs.
- Next, we distribute this load over half of the piers, i.e. n/2 = 5, 6, 7, 8 and calculate safety factors, *SF*

25 based on the model published by (Owino, Zakaria, Shiau 2018)³ for each configuration (Table 2).

² Montana Solar: <u>https://www.mtsolar.us</u>

³ Owino, Zakaria, Shiau, 2018: <u>https://www.researchgate.net/publication/328405959 Pull-</u> out Resistance of Single Piles and Parametric Study using the Finite Difference Method FDM

Table 2. Safety factor results for 10-post array (n = 10), post diameter, $D_P = 1'$, post depth, 1

 $Z_P = 3', 4', 5', 6'$, windspeed U = 90, 100, 110, 120 mph, and array front height h = 24'', 48'', 72'', 2

96", 120". Key: SF < 1.0, 1.0 < SF < 2.0, 2.0 < SF < 3.0, SF > 3.0. 3

	U		90	mph		100	mph		110	mph			120	mph
	~	200	450	600	200	10	60 ⁰	 200	10	600	-	200	10	60 ⁰
	u	50	45	00	50	45	00	50	45	00		50	45	60
SF 10	24	2.5	17	13	2.0	1 4	11	1.6	1 1	0.9		14	10	0.7
10	48	2.3	1.	1.1	1.9	1	0.9	1.5	1.1	0.8		1.3	0.)	0.6
$D_{\rm P}, Z_{\rm P}$	72	2.2	1.5	1.0	1.8	1.2	0.8	1.4	1.0	0.7		1.2	0.8	0.6
1.0	96	2.0	1.4	0.9	1.7	1.1	0.7	1.4	0.9	0.6		1.1	0.8	0.5
3	120	1.9	1.3	0.8	1.6	1.0	0.7	1.3	0.9	0.5		1.1	0.7	0.5
$SF_{n=10}$	24	3.3	2.3	1.7	2.7	1.8	1.4	2.2	1.5	12		1.8	1.3	1.0
10	48		2.	1.5	2.5	1. <mark>7</mark>	1.2	2.1	1.4	1.0		1.7	1. 2	0.8
<i>D</i> _P , <i>Z</i> _P	72	2.9	1.9	1.3	2.3	1.6	1.1	1.9	1.3	0.9		1.6	1.1	0.8
1.0	96	2.7	1.8	1.2	2.2	1.5	1.0	1.8	1.2	0.8		1.5	1.0	0.7
4	120	2.6	1.7	1.1	2.1	1.4	0.9	1.7	1.1	0.7		1.4	1.0	0.6
$SF_{n=10}$	24	4.1	2.8	22	3.3	23	1.8	2.7	1.9	14		2.3	1.6	1.2
10	48		2.	1.9		21	1.5	2.6	1.8	1.3		2.2	1.5	1.1
<i>D</i> _P , <i>Z</i> _P	72	3.6	2.4	1.7	2.9	2.0	1.4	2.4	1.6	1.1		2.0	1.4	0.9
1.0	96		2.3	1.5	2.8	1.8	1.2	2.3	1.5	1.0		1.9	1.3	0.8
5	120	3.2	2.1	1.4	2.6	1.7	1.1	2.2	1.4	0.9		1.8	1.2	0.8
								 			_			
$SF_{n=10}$	24	4.9	<u></u>	2.6		2.8	21	3.3	2.3	17		2.8	1.9	15
10	48	4.6	3.	2.3		2.	1.8	3.1	2.1	1.5		2.6	1.	1.3
$D_{\rm P}, Z_{\rm P}$	72	4.3	2.9	2.0		2.4	1.6	2.9	2.0	1.3		2.4	1.6	1.1
1.0	96	4.1	2.7	1.8		2.2	1.5	2.7	1.8	1.2		2.3	1.5	1.0
6	120	3.9	2.5	1.6		2.1	1.3	2.6	1.7	1.1		2.2	1.4	0.9

4 5

6

7

For example, the safety factor for a 10-post array (n = 10) with a front height array at 120" and thirty degrees, $\alpha = 30^{\circ}$, with a one-foot diameter pier, $D_{\rm P} = 1'$, three feet deep, $Z_{\rm P} = 3'$, the safety factor is 1.9, or just under SF = 2.0.

8 As of this writing (2/9/2022) I am leaning toward a recommendation of $h = 48^{\circ}$ and $\alpha = 60^{\circ}$. I have 9 highlighted the safety factors for this pair of parameters for each of the four pier depths and each of the four windspeeds modeled. Of the sixteen resulting safety factors, the only result that achieves SF > 2.010 11 is $Z_P = 6'$, U = 90 mph. Of the sixteen results four [4] of these result in SF < 1.0, three of which are for Z_P = 3' as indicated by red font on a red background. Based on these preliminary results prior to our 12 13 planned soil testing, I recommend Z_P = 5' to avoid the safety factor of less than unity at U = 120 mph, $\alpha = 60^{\circ}$, n = 10, $D_{\rm P} = 1'$, $Z_{\rm P} = 4'$. 14

Future work will include stress analysis for posts and rails as well as pull-out results for n = 12, 14, 1615 16 and $D_{\rm P}$ = 1.5' and 2.0'. I will also perform a stress analysis for at least three [3] common schedule-40

17 structural tubing standards.

Bradley Layton PhD PE 18 19